
Embedded Systems Design and Modeling 1

Embedded Systems 
Design and Modeling

Chapter 14
Equivalence and Refinement



Embedded Systems Design and Modeling

Motivation
 Why do we need to compare models and 

systems?
 Move up and down the abstraction levels
 Verify the correctness of design as we go down 

in the synthesis path
 Check conformance with a specification
 Optimize a model by reducing complexity
 Check if component substitution is OK
 Anything else?

2



Embedded Systems Design and Modeling

Component Substitution

3



Embedded Systems Design and Modeling

Main Questions
 How can we compare two models, e.g., 

state machines?
 Are they “equivalent”?
 What is the definition of “equivalent”?
 Does one do “more” than the other? (e.g., 

exhibit different behaviors? Produce different 
outputs?)

 Can one represent ALL behavior of the other?
 What is the effect of the environment on the 

equivalence?

4



Embedded Systems Design and Modeling

Type Refinement
 If we want to replace A by B in some 

environment, the ports and their types impose 
four constraints:

5



Embedded Systems Design and Modeling

4 Constraints of Type Refinement
1. B should not require some input signal that the 

environment does not provide.
2. B should produce all the output signals that the 

environment may require.
3. If the environment provides a value v on an 

input port p that is acceptable to A, then if p is 
also an input port of B, then the value is also 
acceptable to B.

4. If B produces a value v on an output port q, 
then if q is also an output port of A, then the 
value must be acceptable to any environment in 
which A can operate.

6



Embedded Systems Design and Modeling

Type Equivalence
 If B is a type refinement of A, and A is a 

type refinement of B, then we say that A 
and B are type equivalent:
 They have the same input and output ports, 

and the types of the ports are the same.
 Type equivalence is necessary but not 

sufficient to replace one machine with 
another:
 If A is spec and B is implementation, A 

imposes more constraints than just data types
 Functional conformity is also required

7



Embedded Systems Design and Modeling

Language Equivalence
 Language L(M) of a state machine M:

 The set of all behaviors for that state machine
 Two machines are language equivalent if 

they have the same language.
 For every input sequence, the two machines 

must produce the same output sequence.
 Example in the next slides

8



Embedded Systems Design and Modeling

Language Equivalence 1st Example

9

 Consider machines M1 
and M2:

 Type equivalence?
 Actor models have the 

same input ports and the 
same output ports.

 The ports have the same 
types.

 Language equivalence?
 For every input sequence, 

the two machines produce 
the same output sequence.

M2

M1



Embedded Systems Design and Modeling

Language Equivalence 2nd Example

10



Embedded Systems Design and Modeling

Language Equivalence 3rd Example

11

 M1 and M2 
produce the 
output sequence 
for any input 
sequence

 M1 and M2 are 
language 
equivalent



Embedded Systems Design and Modeling

Language Containment/Refinement
 If for two state machines A and B, L(A) is 

a subset of L(B), then:
 All behaviors of A are the same as B
 But B has behaviors that A does not
 This is called language containment
 A is a language refinement of B
 B is a language containment of A

12



Embedded Systems Design and Modeling

Language Containment/Refinement
 Language refinement shows the suitability 

of A as a replacement for B:
 Every behavior of B is acceptable to an 

environment =>
 Every behavior of A is acceptable to that 

environment =>
 A can substitute for B in that environment
 Any LTL formula about inputs, outputs, and 

behavior (but not states) that holds for B also 
holds for A

 B may be a spec/higher level model, A may be 
an implementation/lower level model 13



Embedded Systems Design and Modeling

Language Containment Example
 M3 can produce 

any output 
sequence that M1 
and M2 can

 But can also 
produce other 
outputs

 M1 and M2 are 
language 
refinements of 
M3

14



Embedded Systems Design and Modeling

Simulation
 Language equivalence is not enough in general:

 These two machines are language equivalent but have 
different state structures

 In 2nd transition: M1 can do something that M2 can never 
match => M1 simulates M2, M1 cannot replace M2

 In 2nd transition: M2 can do everything that M1 can => 
M2 can replace M1

15



Embedded Systems Design and Modeling

Simulation: Matching Game
 M1 simulates M2?
 Play a game where:

 M2 gets to move first in each round
 Both machines in their initial states
 M2 moves first by reacting to an input valuation
 If nondeterministic choice, then it is allowed to make any 

choice, output valuation is created
 M1 has to react to the same input valuation that M2 reacted to
 If nondeterministic choice, it must make a choice that matches 

the output of M2
 If there are multiple such choices, it must select one without 

knowledge of the future inputs or future moves of M2
 Its strategy should be to choose one that enables it to 

continue to match M2, regardless of what future inputs arrive 
or future decisions M2 makes.

16



Embedded Systems Design and Modeling

Matching Game Result
 M1 wins this game (M1 simulates M2) if it can always 

match the output symbol of M2 for all possible input 
sequences

 If in any reaction M2 can produce an output symbol that M1 
cannot match, then M1 does not simulate M2.

 A simulation relation is complete if it includes all possible 
plays of the game.

 It must account for ALL reachable states of M2 (the 
machine that moves first) because M2’s moves are 
unconstrained

 M1’s moves are constrained by the need to match M2
 It is not necessary to account for all of its reachable states

17



Embedded Systems Design and Modeling

Formal Model
 M1 simulates M2 if there is a subset S of 

States2×States1 such that:

18



Embedded Systems Design and Modeling

Properties
 Simulation is transitive:

 If M1 simulates M2 and M2 simulates M3, then 
M1 simulates M3

 Simulation relation is non-unique:
 When a machine M1 simulates another 

machine M2, there may be more than one 
simulation relation

 Example in the next slide

19



Embedded Systems Design and Modeling

Non-Uniqueness Example
 M1 simulates M2 in 3 ways:

20



Embedded Systems Design and Modeling

Simulation vs. Language Containment
 Simulation is typically used to relate a simpler 

specification M1 to a more complicated realization 
M2

 When M1 simulates M2, then the language of M1 
contains the language of M2

 Theorem: if M1 simulates M2, then L(M2) is a 
subset of L(M1)
 Note: The opposite is NOT true!

 Simulation relation differs from language 
containment only for nondeterministic FSMs!

21



Embedded Systems Design and Modeling

Bisimulation
 Is it possible to have two machines M1 

and M2 where M1 simulates M2 and M2 
simulates M1, and yet the machines are 
observably different?
 Yes, even though by previous theorem their 

languages must be identical
 Example in the next slide:

 M1 simulates M2
 M2 simulates M1
 But they may act differently!

22



Embedded Systems Design and Modeling

Bisimulation Example

23

Note that the trick is in 
ability to alternate which 
machine moves first!



Embedded Systems Design and Modeling

Bisimulation Definition
 M1 is bisimilar to M2 (or M1 bisimulates

M2) if they are type equivalent and we 
can play the matching game so that in 
each round either machine can move first

24



Embedded Systems Design and Modeling

Summary
 M2 is a type refinement of M1:

 M2 can replace M1 without causing a type conflict.
 M2 is a language refinement of M1:

 M2 can produce only output sequences that M1 can produce, given the 
same input sequences.

 M2 is a simulation refinement of M1 (equivalently, M1 simulates 
M2):
 At every reaction, M2 can produce only outputs that M1 can produce.

 M2 is bisimilar to M1:
 At every reaction either machine can produce only outputs that the 

other can produce.
 In all cases, if M1 is “valid” in a system, then so is M2, where only 

the meaning of “valid” varies.
 Alternative terminology: M2 implements M1 (here, M1 is taken to 

be a specification).

25



Embedded Systems Design and Modeling

Homework Assignments
 Chapter 14: your choice!
 Due date: Tuesday 1404/3/6

26


